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Abstract

Magnetostatic modes of oscillation arise when nonuniform magnetic fields are
applied to a ferrimagnetic sample. This can be achieved by positioning a ferri-
magnet within a microwave resonating cavity. The purpose of this paper is to find

where in a cavity a sample must be placed to obtain particular modes of oscillation.

Correct identification of magnetostatic modes is useful in computing one of the most
important properties of magnetic substances--saturation magnetization.

Two approaches are taken to the foregoing problem. The first yields a general

equation for the location which will produce a desired mode. This equation tends to
be mathematically complicated. The second approach places a sample in a sym-

metrical field position within the resonant cavity, checking to see which modes are

present and their relative intensities. The latter method is mathematically simpler
and permits practical application.
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Positioning of Ferrimagnets in a Resonant Cavity

to Induce Magnetostatic Modes of Oscillation

1. INTRODUCTION

If a ferrimagnetic sample is placed in an oscillating microwave field and is

subjected to an apprbpriately oriented d-c magnetic field (Hdc), it will experience
certain natural resonant fields on its surface. These field configurations are

referred to as the natural magnetostatic modes of oscillation, and expressed in

three parameters (n, m, r). The letters (n, m, r) arise from the notation used in
the Legendre polynomials which express solutions of field resonances on spherical

surfaces. A physical understanding of On* and 0 ml is possible by studying the locus
of jPm ( Ccor s 9)-I° m -i- 0 on a sphere with center at origin. This will divide the

sphere into (n-m) parallels of latitude symmetrical about the equator (8 a 900) and

of m great circles through the pole, two consecutive ones being inclined at an

angle w/m to one another. The field configuration for the (4, 3,0) mode has been
outlined by Walker 1 and may be used an an example of the type pattern set up in

a sphere.

The resonant fields on a sphere can be expressed in terms of a scalar mag-

netic potential 41 given by the P.D.E.:

ubmi) t + fo plt + Janur 96

Submitted for publication 7 January 1963



2

Walker2 has obtained this equation by solving Maxwell' s equations (div B = 0, curl
H = 0) and the equation of motion dM a r (M x H) simultaneously. Fletcher and

3 
an

Belu have solved for i in the above P.D.E. for the case of a sphere. In theirm

paper they have tabulated the general + m for n - m + s with a = 0 to 5 and have

also listed particular m for n = 0 to 5.

2. PROCEDURE

In order to find the location inside the cavity that will produce a desired
resonance configuration, the following boundary conditions must be satisfied.
First, the tangentially directed gradient of the magnetic scalar potential associated

with the desired mode must be equated to the tangential component of the r-f mag-
netic field of the cavity. Secondly, the radial component of Hrf plus magnetization

is equated to the radial Hrf in the cavity. These conditions are more conveniently
expressed in the following form:4

(-) I outside = (V) inside = (H+) inside (23)

r=a r=a r=a

(Hr) I outside [l÷ Ksin2 a~r int r=a

r=a

+K sinO cosO(•intra .a (• intr (2b)
a int/rza La \84) /nr-a

When these boundary conditions on the sphere are matched, the sample is located
in the correct position within the cavity.

A detailed analysis of this procedure is carried out for the (2, 2, 0) mode in
the Appendix. According to this method, it is theoretically possible to determine
the location in the cavity that will produce specified modes of oscillation on the
sphere. One merely looks up the 'Im for the desired mocle in Fletcher and Bell 5

and matches boundary conditions as described in Eqs. (2s) and (2k) on the surface
of the sphere. Although mathematically this method will produce the desired
results, the practical application may result in computational difficulties.

For this reason, it is often more convenient to assume a position within the

cavity and work backwards to see what modes are present and their relative
intensity. This is the method used by Fletcher, Solt, and Bell, successful in

achieving the following modes for various sample positions:7

(2, 2, 0); (2, 0, 0); (1, 1, 0); (3, 3, 0);
(3, 1, 0); (2, 1, 0); (3, 0, 0); (3, 2, 0).
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By placing the sample in a position symmetrical with the r-f field within the

resonant cavity and changing the orientation of the Hdc field, they were able to

observe the above modes and tabulate their calculated and observed intensities.8

A comprehensive bibliography follows the Appendix.
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Appendix

POSITION CALCULATION FOR (2,2, 0) MODE

The resonant microwave field configurations for the microwave TE 2 0 1

mode are:

E = Ez, = H a0 (3a)

Ey z 0(26) A sin 2!- sin lz' (3b)

6 d

Figur 1.Retngla avt

H -j L2-6) A VI sinZXIýzsi coo a (30)

Hz,= z.A coo U9 sin 11W' (3d)

with Superimposed
X Coordinate System

The above field representations can be expressed in another rectangular

coordinate system if the following transformations are made:

x4 a " ,YI X , " Zl ' - xI (4%, b_,)
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Then Eqs. (3) can be expressed as follows:

Ey H Exl o Hz. a 0 (5a)

E z 012 1 1 A sin 2wyl sin WX(5)
zi X 6 sn ds- 5 cod (5b)

H2wy1  lwxl
=, A ssin-oo --

H JA cos 6 i(5d)

(If the TE 1 0 1 mode is desired, replace 6 by 26 in the above equations.]
The scalar potential for the (2, 2, 0) magnetostatic mode is given by

Fletcher and Bell 3 as:

.'2K*G2(x -y 2+ JH2 2xy] (6a)

2-a 2K22

where

2 2
P2 (O) )-v2 2 (6b)

A2  2

2 a 2 22(5) F 2 21 R~'(~
H= 2 .O(-v 2A 2A.B 2 (n+ I. + (60

2 4 2 (6d)

(n+ 14. o 2 • )
21

n+ 1+ 0 2 2 . - 5+ 2-- 2 (6e)
PaHa
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H

H

aH H, (6h)H' 4wM

a - " (6i)

Hi " Ho $Au(61

go -Zv -l/K (6k)

whr 2  2where A2 and B. describe the amplitude of the applied r-f field. When2 •2" " b j*
A2  B 2, the + dependence becomes and circular polarization occurs inside

and outside the sample.

Define new variables

" 02 
(7a)nI u.a2K

9H22 (7b)

2. 22(x2_ (7c)
*2 +i( J"2 )ji(2xy)

Perform the following coordinate transformations:

x - r coso sine (Ba)

y - r sin# sinG (8b)

z - r coo 6 (8)
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,x X r COS - 1# s@in (8d)

A (Ae
iY ir sin+ +I. i cos (e)

where this coordinate system is referred to the center of the sphere. The
scalar potential in spherical coordinates then becomes:

240 (r 2 , co2 sin 2 8 -r 2 slhn2 * sin2 ) + j2 (2r 2 co., sin* sin2 0) (9)

The tangential component of H(HI) is the # component of the gradient
0j from Eq. (9). This is found to be:

(H+) I M . 1 l(r 2 2coosin+ sin2a
(H*)inside r sinG a r sin 0 In (

+ r2 2 sin# coso sin 2)+ Jpi2 (2r2 sin2 sin 20

- 2r 2 cos 2 # sin2 e)] (10a)

Simplifying, we get:

(H+)inside 1 (2r stin2 sin 8) + Ji 2 (2r cos 24 sine) (10b)

When a change of coordinates

xI =x+ xa (0la)

Yl a y+ yo (11bb)

is applied to the Eqs. in (5) the Hrf field in the cavity is given by-

R=H I +HyTy JA coso -2 (y4-y)sin i (xs÷ x)ix

x x y yd

-j2 A 21 ) sin w(y. +-y) cos -(x +,x), (12)

where x and Y. are the distances from a corner of the cavity to the center of

the sphere, and x and y are the coordinates of any point with respect to the center

of the sphere.



A transformation of Eq. (12) into spherical coordinates using Eqs. (8) with

the center of the sphere as the origin yields

"--j AV,--() sin-2Z(y.+r sine sin#)

• Cos 1 (x + r sine cos+) ar sin+ +, coo,)

2w 1W+ JA cos Tys + r sine sin*) sin (x, + r sine cos*)

A AI(r C cos+ -i *sin#) (13)

From Eq. (13). the H+ is found to be:

H = -J2-26 AV1-( sin 2 (y + r sinG sin# )
% 26 6 s

cos-L(XN+ r sine cos#) cos*

-JA coso•(+s r sine sin#) sin (xs + r sin 0 cos+) sin+ (14)

Applying the boundary condition for the + components of H on the surface of the

sphere, we equate Eq. (10b_) to Eq. (14), obtaining

-•Ii (2a sin2+ sine) + jrj2 (2a cos 24 sine)

-j s2in - (y. + a sin 0 sin*)

cos-7(x a sine cos+) cos+

-JA cos 26 a sine sin#) uin No + a sine cos#) sin# (15)

The radial boundary condition is given by Eq. (2b), where:

Hr I outside 0 -j Y6 A V-()2 sn (ye + a sinG0 sin+)
rza

Cos dF(N + a sine cosn) sin#
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J jA cos -2- (ys + a sine sin#) sin +(x 4a sinG cos+) con* (16)

Hr Iinside a14Ksne()a a coa a -at~ V (17)
r n.

with

2Y) , a cos2+ sin2 6 Jv2 2a sin 2+ sin2 9 (18a)

() i 21, a 2 sinG coso cos24 + j2712 a2 sin2+ sin8 cos9 (18b)

(& a • 2ri a 2 sin 2 sin 24 + J212 a 2 sin2 0 cos 2+ (18c)

When Eq. (18) is substituted into Eq. (17), the second boundary condition
equation is given by-

(1.K sin Of).x-I.-inecosG**i -(±qr a o a a 09a

Aj282) \*~ 2 gj w(y.+a sinS sin+)

cos l-(xs + a sine coso) sin+

+ JA cog h(Yo + a sine coso) sin w(x + a sinG coso) coso (19)

Equations (19) and (15) must be solved simultaneously to find x and ys' the
distance of the sphere from a corner of the cavity. Hence x and ys give the
location in the cavity that will produce the desired (2, 2, 0) mode of oscillation.
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